Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 15, 2026
-
We present a polarization-based approach to perform diffuse-specular separation from a single polarimetric image, acquired using a flexible, practical capture setup. Our key technical insight is that, unlike previous polarization-based separation methods that assume completely unpolarized diffuse reflectance, we use a more general polarimetric model that accounts for partially polarized diffuse reflections. We capture the scene with a polarimetric sensor and produce an initial analytical diffuse-specular separation that we further pass into a deep network trained to refine the separation. We demonstrate that our combination of analytical separation and deep network refinement produces state-of-the-art diffuse-specular separation, which enables image-based appearance editing of dynamic scenes and enhanced appearance estimation.more » « less
-
Ensuring ideal lighting when recording videos of people can be a daunting task requiring a controlled environment and expensive equipment. Methods were recently proposed to perform portrait relighting for still images, enabling after-the-fact lighting enhancement. However, naively applying these methods on each frame independently yields videos plagued with flickering artifacts. In this work, we propose the first method to perform temporally consistent video portrait relighting. To achieve this, our method optimizes end-to-end both desired lighting and temporal consistency jointly. We do not require ground truth lighting annotations during training, allowing us to take advantage of the large corpus of portrait videos already available on the internet. We demonstrate that our method outperforms previous work in balancing accurate relighting and temporal consistency on a number of real-world portrait videosmore » « less
-
We present a method to separate a single image captured under two illuminants, with different spectra, into the two images corresponding to the appearance of the scene under each individual illuminant. We do this by training a deep neural network to predict the per-pixel reflectance chromaticity of the scene, which we use in conjunction with a previous flash/no-flash image-based separation algorithm to produce the final two output images. We design our reflectance chromaticity network and loss functions by incorporating intuitions from the physics of image formation. We show that this leads to significantly better performance than other single image techniques and even approaches the quality of the two image separation method.more » « less
An official website of the United States government

Full Text Available